Prediction of Student Study Duration Using Multiple Linear Regression Method
Abstract
Data mining is a process of extracting valuable and meaningful information from large or complex data sets. In the field of education, data mining can be used to predict the length of study of students by identifying factors that affect the length of study of students. This research aims to predict the length of study of students and to find out the most influential variables in completing the length of study. The method used in this research is the Multiple Linear Regression method. Training data as much as 292 data is taken from data on graduates from 2016 - 2018. While the testing data is taken from the active student data class of 2018 as much as 148 data. The model formed will be evaluated to determine the accuracy and RMSE values. The results showed that the Multiple Linear Regression method succeeded in carrying out the prediction process optimally with a percentage accuracy value of 85%, and an RMSE value of 0.76, which means that the error rate of this model is very low. Based on the resulting coefficient value, the SKS variable is the most influential variable in the length of study of students.
References
[2] R. Dwi, Pambudi, A. Afif, Supianto, and N. Y. Setiawan, “Prediksi Kelulusan Mahasiswa Berdasarkan Kinerja Akademik Menggunakan Pendekatan Data Mining Pada Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Brawijaya,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 2196, vol. 3, no. 3. pp. 2194–2200, 2019.
[3] T. Syahputra, J. Halim, and K. Perangin-angin, “Penerapan Data Mining Dalam Memprediksi Tingkat Kelulusan Uji Kompetensi ( UKOM ) Bidan Pada STIKes Senior Medan Dengan Menggunakan Metode Regresi Linier Berganda,” Sains dan Komput., vol. 17, no. 1, pp. 1–7, 2018.
[4] J. Adhiva, S. A. Putri, and S. G. Setyorini, “Prediksi Hasil Produksi Kelapa Sawit Menggunakan Model Regresi Pada PT . Perkebunan Nusantara V,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., pp. 155–162, 2020.
[5] A. Fitri Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” J. Sci. Soc. Res., vol. 4307, no. 2, pp. 78–85, 2020.
[6] S. P. Nabila, N. Ulinnuha, and A. Yusuf, “Model Prediksi Kelulusan Tepat Waktu Dengan Metode Fuzzy C-Means Dan K-Nearest Neighbors Menggunakan Data Registrasi Mahasiswa,” Netw. Eng. Res. Oper., vol. 6, no. 1, p. 39, 2021, doi: 10.21107/nero.v6i1.199.
[7] L. Y. Lumban Gaol, M. Safii, and D. Suhendro, “Prediksi Kelulusan Mahasiswa Stikom Tunas Bangsa Prodi Sistem Informasi Dengan Menggunakan Algoritma C4.5,” Brahmana J. Penerapan Kecerdasan Buatan, vol. 2, no. 2, pp. 97–106, 2021, doi: 10.30645/brahmana.v2i2.71.
[8] E. Haryatmi and S. P. Hervianti, “Penerapan Algoritma Support Vector Machine Untuk Model Prediksi Kelulusan Mahasiswa Tepat Waktu,” vol. 1, no. 10, pp. 386–392, 2021.
[9] E. P. Rohmawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Decision Tree dan Artificial Neural Network,” J. Ilm. MATRIK Vol.20 No.1, April 201821-30, pp. 21–30, 2018.
[10] K. Puteri and A. Silvanie, “Machine Learning Untuk Model Prediksi Harga Sembako Dengan Metode Regresi Linier Berganda,” Jurnal Nasional Informatika, vol. 1, no. 2. pp. 82–94, 2020.
[11] A. Nurdany, “Rentabilitas Terhadap Pendapatan Margin MurabahahBank Syariah (Studi Kasus pada PT. Mega Bank Mega Syariah Periode 2005-2012),” Khazanah, vol. 5, no. 2, pp. 13–24, 2012.
[12] S. H. Saputro, R. F. B. Atmaja, and Hengki, “Analisis Pengaruh Growth Dan Variabel Makroekonomi Terhadap,” vol. 01, pp. 1–13, 2021.
Copyright (c) 2023 Triyani Arita Fitri
This work is licensed under a Creative Commons Attribution 4.0 International License.