Comparison of Support Vector Machine and Random Forest Algorithms for Analyzing Online Loans on Twitter social media

  • Hamdani STMIK Amik Riau
  • Randi N.A
  • M. Khairul Anam STMIK Amik Riau
Keywords: Online loans, Sentiment Analysis, Twitter, SVM, Random Forest

Abstract

Online loans represent a form of financial service wherein borrowers can apply for loans through digital platforms without the need to visit physical offices. The application, approval, and disbursement processes are conducted online, leveraging technology to facilitate financial access and transactions. However, some online lending services impose high-interest rates, resulting in a significant financial burden for borrowers. Moreover, there are instances of inappropriate debt collection practices, such as contacting the borrower's friends or family, leading to discussions and comments on social media platforms like Twitter. This research aims to analyze the patterns of comments in Indonesian society regarding online lending. The study utilizes sentiment analysis and compares machine learning algorithms to assess their accuracy. The algorithms employed in this study are Support Vector Machine (SVM) and Random Forest. The results indicate that the SVM algorithm achieves an accuracy of 93.85%, while Random Forest achieves an accuracy of 91.62%.

References

[1] J. Z. Y. Arvante, “Dampak Permasalahan Pinjaman Online dan Perlindungan Hukum Bagi Konsumen Pinjaman Online,” Ikatan Penulis Mahasiswa Hukum Indonesia Law Journal, vol. 2, no. 1, pp. 73–87, Feb. 2022, doi: 10.15294/ipmhi.v2i1.53736.
[2] M. K. Anam, M. I. Mahendra, W. Agustin, Rahmaddeni, and Nurjayadi, “Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA),” Intensif, vol. 6, no. 1, pp. 2549–6824, 2022, doi: 10.29407/intensif.v6i1.15870.
[3] T. P. Lestari, “Analisis Text Mining pada Sosial Media Twitter Menggunakan Metode Support Vector Machine (SVM) dan Social Network Analysis (SNA),” Jurnal Informatika Ekonomi Bisnis, pp. 65–71, Aug. 2022, doi: 10.37034/infeb.v4i3.146.
[4] E. P. Nuansa, “Analsis Sentimen Pengguna Twitter Terhadap Pemilihan Gubernur Dki Jakarta Dengan Metode Naïve Bayesian Classification Dan Support Vector Machine,” 2017.
[5] G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” Integer Journal Maret, vol. 1, no. 1, pp. 32–41, 2017.
[6] S. Kurniawan, W. Gata, D. A. Puspitawati, Nurmalasari, M. Tabrani, and K. Novel, “Perbandingan Metode Klasifikasi Analisis Sentimen Tokoh Politik Pada,” Resti, vol. 1, no. 10, pp. 2–8, 2019.
[7] N. Saputra, B. T. Adji, and E. A. Permanasari, “Analisis Sentimen Data Presiden Jokowi dengan Preprocessing Normalisasi dan Stemming Menggunakan Metode Naive Bayes dan SVM,” Jurnal Dinamika Informatika, vol. 5, no. November, p. 12, 2015.
[8] G. A. Buntoro, “ANALISIS SENTIMEN HATESPEECH PADA TWITTER DENGAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE,” J Chem Inf Model, vol. 53, no. 9, pp. 1689–1699, 2016, doi: 10.1017/CBO9781107415324.004.
[9] M. A. Abubakar, M. Muliadi, A. Farmadi, R. Herteno, and R. Ramadhani, “Random Forest Dengan Random Search Terhadap Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung,” Jurnal Informatika, vol. 10, no. 1, pp. 13–18, Mar. 2023, doi: 10.31294/inf.v10i1.14531.
[10] M. K. Anam, Rahmaddeni, M. B. Firdaus, H. Asnal, and Hamdani, “Sentiment Analysis to analyze Vaccine Enthusiasm in Indonesia on Twitter Social Media,” JAIA – Journal Of Artificial Intelligence And Applications, vol. 1, no. 2, pp. 23–27, 2021.
[11] Junadhi, Agustin, M. Rifqi, and M. K. Anam, “Sentiment Analysis of Online Lectures using K-Nearest Neighbors based on Feature Selection,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 216–225, Dec. 2022, doi: 10.23887/janapati.v11i3.51531.
[12] M. K. Anam et al., “Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm,” ILKOM Jurnal Ilmiah, vol. 15, no. 2, pp. 290–302, 2023, doi: 10.33096/ilkom.v15i2.1590.290-302.
[13] F. Z. Tala, “Pembelajaran stemming pada bahasa indonesia,” 2003.
[14] R. S. Putra, W. Agustin, M. K. Anam, L. Lusiana, and S. Yaakub, “The Application of Naïve Bayes Classifier Based Feature Selection on Analysis of Online Learning Sentiment in Online Media,” Jurnal Transformatika, vol. 20, no. 1, p. 44, Jul. 2022, doi: 10.26623/transformatika.v20i1.5144.
[15] P. S. Ayu, “Analisakompetitifsosialmediamenggunakanmetodeklasifikasi naive bayesdan supportvector machine,” 2018.
[16] N. K. Dewi, U. Dyah Syafitri, and S. Y. Mulyadi, “Penerapan Metode Random Forest Dalam Driver Analysis,” Forum Statistik dan Komputasi, vol. 16, no. 1, pp. 35–43, 2011.
[17] M. D. Purbolaksono, M. Irvan Tantowi, A. Imam Hidayat, and A. Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam Deteksi Pasien Penyakit Diabetes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, Apr. 2021, doi: 10.29207/resti.v5i2.3008.
[18] A. G. Rakhmat and W. Mutohar, “Prakiraan Hujan menggunakan Metode Random Forest dan Cross Validation,” MIND (Multimedia Artificial Intelligent Networking Database) Journal, vol. 8, no. 2, pp. 173–187, 2023, doi: 10.26760/mindjournal.v8i2.173-187.
[19] E. Christy and K. Suryowati, “Analisis Klasifikasi Status Bekerja Penduduk Daerah Istimewa Yogyakarta Menggunakan Metode Random Forest,” Jurnal Statistika Industri dan Komputasi, vol. 6, no. 1, pp. 69–76, 2021.
Published
2024-04-01