Sentiment Analysis of Technology Utilization by Pekanbaru City Government Based on Community Interaction in Social Media

  • Bunga Nanti Pikir STMIK Amik Riau
  • M. Khairul Anam STMIK Amik Riau
  • Hadi Asnal STMIK Amik Riau
  • Rahmaddeni STMIK Amik Riau
  • Triyani Arita Fitri STMIK Amik Riau
  • Hamdani STMIK Amik Riau
Keywords: Services, Pekanbaru, Twitter, Naïve Bayes Clasifier, Sentiment Analysis


Government services for the public are currently utilizing technology, especially in the city of Pekanbaru. The government has currently centralized all services for the public, both online and offline, in public service malls. The type of service that uses technology, especially for online services, has received criticism in online media such as Twitter. To see the public's response to Pekanbaru city government services, especially in terms of technology, this study will use sentiment analysis to see positive, negative, and neutral comments. The method used is to see the accuracy generated using the Naïve Bayes Classifier (NBC) method. Bayes classifier is a statistical classifier, where the classifier can predict the probability of class membership of a data tuple that will fall into a certain class, according to the probability calculation. Accuracy results are obtained by dividing training data and testing data with a comparison of 70%:30% with an accuracy value of 55.56%, Precision 64%, recall 80%, f-score 71.2%.


F. Firmansyah and A. B. Raharja, “Quantification of Land Cover Changes in Sub-urban Areas of Pekanbaru City,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 887, no. 1, doi: 10.1088/1755-1315/887/1/012020.

M. K. Anam, Purwanto, T. A. Fitri, and A. N. Ulfah, “SMART method utilization for meetinghouse elections in Pekanbaru City,” JAIA – J. Artif. Intell. Appl., vol. 1, no. 1, pp. 11–18, 2020.

F. F. Adelia, M. K. Anam, T. A. Fitri, and F. Zoromi, “ANALISIS PERSPEKTIF PADA PENERAPAN E-MONEY MENGGUNAKAN DELONE AND MCLEAN IS SUCCESS MODEL DI BANDARA SULTAN SYARIF KASIM II PEKANBARU,” J. Inform. Rekayasa Elektron., vol. 3, no. 2, pp. 100–110, 2020, doi:

G. Meiwanda, “Challenges of Smart City: Local Government in Pekanbaru City and Community,” in Annual Conference of Indonesian Association for Public Administration, 2020, vol. 122, pp. 40–53, doi: 10.2991/aebmr.k.200301.003.

H. Yodiansyah, N. Yuzalmi, and I. Zain, “Access To Communication Planning and Transportation Management Technology in Assessment of Vehicle Operations in Pekanbaru City’S, Riau, Indonesia,” Int. J. Res. -GRANTHAALAYAH, vol. 6, no. 9, pp. 1–16, 2018, doi: 10.29121/granthaalayah.v6.i9.2018.1200.

M. K. Anam, “Analisis Respons Netizen Terhadap Berita Politik Di Media Online,” J. Ilm. Ilmu Komput., vol. 3, no. 1, pp. 14–21, 2017, doi: 10.35329/jiik.v3i1.62.

E. R. Arumi and P. Sukmasetya, “Exploiting Web Scraping for Education News Analysis Using Depth-First Search Algorithm,” JOIN (Jurnal Online Inform. ), vol. 5, no. 1, pp. 19–26, 2020, doi: 10.15575/join.v5i1.548.

B. Saberi and S. Saad, “Sentiment analysis or opinion mining: A review,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 5, pp. 1660–1666, 2017, doi: 10.18517/ijaseit.7.5.2137.

I. B. A. Peling, I. N. Arnawan, I. P. A. Arthawan, and I. G. N. Janardana, “Implementation of Data Mining To Predict Period of Students Study Using Naive Bayes Algorithm,” Int. J. Eng. Emerg. Technol., vol. 2, no. 1, p. 53, 2017, doi: 10.24843/ijeet.2017.v02.i01.p11.

Z. H. Moe, T. San, M. M. Khin, and H. M. Tin, “Comparison of Naive Bayes and Support Vector Machine Classifiers on Document Classification,” in 2018 IEEE 7th Global Conference on Consumer Electronics, GCCE 2018, 2018, pp. 285–286, doi: 10.1109/GCCE.2018.8574785.

M. K. Anam, B. Nanti, P. Gulo, M. B. Firdaus, and S. Erlinda, “Penerapan Naïve Bayes Classifier , K-Nearest Neighbor dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah Applications of Naïve Bayes Classifier , K-Nearest Neighbor and Decision Tree to Analyze Sentiment on Netizen and Gove,” Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.

H. Chen, S. Hu, R. Hua, and X. Zhao, “Improved naive Bayes classification algorithm for traffic risk management,” EURASIP J. Adv. Signal Process., vol. 30, 2021, doi: 10.1186/s13634-021-00742-6.

A. W. Syaputri, E. Irwandi, and M. Mustakim, “Naïve Bayes Algorithm for Classification of Student Major’s Specialization,” J. Intell. Comput. Heal. Informatics, vol. 1, no. 1, p. 17, 2020, doi: 10.26714/jichi.v1i1.5570.

S. Khomsah, “Naive Bayes Classifier Optimization on Sentiment Analysis of Hotel Reviews,” J. Penelit. Pos dan Inform., vol. 10, no. 2, p. 157, 2020, doi: 10.17933/jppi.2020.100206.

S. Sendari, I. A. E. Zaeni, D. C. Lestari, and H. P. Hariyadi, “Opinion Analysis for Emotional Classification on Emoji Tweets using the Naïve Bayes Algorithm,” Knowl. Eng. Data Sci., vol. 3, no. 1, pp. 50–59, 2020, doi: 10.17977/um018v3i12020p50-59.

M. K. Anam, B. N. Pikir, M. B. Firdaus, S. Erlinda, and Agustin, “Penerapan Naïve Bayes Classifier , K-Nearest Neighbor dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah Applications of Naïve Bayes Classifier , K-Nearest Neighbor and Decision Tree to Analyze Sentiment on Netizen and Gove,” Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput. ?141, vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.

Y. Yunitasari, A. Musdholifah, and A. K. Sari, “Sarcasm Detection For Sentiment Analysis in Indonesian Tweets,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 1, pp. 53–62, 2019, doi:

E. Sutoyo and A. Almaarif, “Twitter sentiment analysis of the relocation of Indonesia’s capital city,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1620–1630, 2020, doi: 10.11591/eei.v9i4.2352.

E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID J., vol. 13, no. 3, pp. 169–179, 2021, doi: 10.22303/csrid.13.3.2021.169-179.

A. N. Ulfah and M. K. Anam, “Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1–10, 2020, doi: 10.35957/jatisi.v7i1.196.

S. E. Pratama, W. Darmalaksana, D. Sa’adillah Maylawati, H. Sugilar, T. Mantoro, and M. A. Ramdhani, “Weighted inverse document frequency and vector space model for hadith search engine,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 2, pp. 1004–1014, 2020, doi: 10.11591/ijeecs.v18.i2.pp1004-1014.

S. H. Mahanani, T. Mauritsius, and N. Legowo, “Recommender System using Content Based Filtering for News Portal in Indonesia,” Int. J. Recent Technol. Eng., vol. 8, no. 6, pp. 173–178, 2020, doi: 10.35940/ijrte.f7231.038620.

W. B. Trihanto, R. Arifudin, and M. A. Muslim, “Information Retrieval System for Determining The Title of Journal Trends in Indonesian Language Using TF-IDF and Na?ve Bayes Classifier,” Sci. J. Informatics, vol. 4, no. 2, pp. 179–190, 2017, doi: 10.15294/sji.v4i2.11876.